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Abstract-The optimal shape of an earth penetrating projectile is investigated. Based on the Discs-Model,
earlier developed by the author, the interaction pressure is expressed as function of the nose shape. The
instantaneous resistive force is minimized to yield and optimal shape function. The optimal shape is found to be
dependent on a single parameter of velocity, deceleration and medium properties.

INTRODUCTION
Many studies have been devoted to projectile penetration into earth media. The common problem
is to predict deceleration history, penetration depth, interaction pressure distribution and medium
response when projectile and target data are known. The procedures may be gathered into the
following main groups:

(1) Empirical formulae based on curve fitting to test data, which predict penetration
depth[l,2].

(2) Models based on the Spherical or the Cylindrical cavity expansion theory [3, 4]. These
simplified methods do not properly represent the soil-projectile interaction and showed poor
agreement when compared with test data[5].

(3) Two-dimensional wave propagation computer codes [6-8] to predict the normal penetra­
tion of a rigid or deformable projectile. These codes are based on the governing field equations
and predict the most detailed information regarding medium and projectile response.
Recently a new one-dimensional analytical model has been developed [9] in which the target is
represented by a set of discs, thus reducing the penetration event into a one-dimensional
problem. The target material is modeled by an equivalent locked hydrostat and an equivalent
constant shear pressure relation. The nonlinear relationships of the volumetric stress vs strain
and the principal stress difference at failure vs volumetric stress have been transformed into
the equivalent locking model by introducing new parameters of average volumetric
strain and volumetric stress. These parameters correspond according with the nonlinear
relationship and found by equating the internal work done by the average values over the
stressed zone to that done by the variable stresses and strains. The analysis of a typical disc
response yields an expression for the interaction pressure as function of the disc properties, the
projectile nose shape and the instantaneous values of velocity and deceleration. Comparisons
of the discs model with test data and two-dimensional code predictions, in the low and high
velocity range, show very good agreement[9, 10].

Previous studies on penetration are always based on a given nose shape. Hereunder a
general shape function is taken and the corresponding expression for the resistive force is
developed. The optimal nose shape that yields the minimum resistive force is analyzed using
variational techniques.

FORMULATION OF THE PROBLEM
Consider a projectile penetrating through a semi infinite soil medium where the axis of

penetration is normal to the top surface (Fig. 1). When the discs model is adopted, the
expression for the interaction pressure is (9):

p(Z, t) =Pst +A· R'(Z, t)+ B . R(Z, t). R(Z, t)

PSI =!T1nG)
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Fig. 1. Geometry for projectile and idealized medium.
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where: p(Z, t) = the radial component of the interaction pressure on a disc at depth Z; R(Z, 0,
R(Z, t), R(Z, t) =the internal boundary radial values of displacement, velocity and ac­
celeration; T =average principal stress difference at failure; E =the average volumetric locking
strain; Po = the free field mass density; and p == the mass density behind the plastic shock front.
A local coordinate system is attached to the nose tip, and the local coordinate along the nose
may be expressed as follows:

z == W(t)- Z (2)

where W(t) is the nose tip penetration depth. The projectile nose of length L is described by the
general shape function !(z) which is assumed to have continuous first and second derivatives
and to satisfy the boundary conditions:

f(O) = 0

f(L) = D/2.

At any distance z its value is identical with the local radius R(Z, t):

R(Z, t) = j(z).

Using the chain rule the radial values of velocity and acceleration are found to be:

R(Z, t) == W(t) a~~z) = W(t)f'(z)

R(Z, t) == Wet) a~~z) + W 2(t) a;z\z) == W(t)r(z) + W 2(t)f"(z).

(3a)

(3b)

(4)

(5a)

(5b)
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Substituting (5a) and (5b) into eqn (1), the interaction pressure for a general nose shape is:
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p(z, t) =Pst +AW2(t) . [/,(Z)]2 +BW(t)/(z)/,(z) +BW2(t)/(z)/"(z). (6)

It is assumed that the projectile nose surface is smooth and there is no friction resistance. The
local resistive force is perpendicular to the nose surface and the contribution of the disc to the
resistive force acting on the nose is therefore:

dPz(z, t) =2'lTp(z, t)/'(z) dz =2'lT{f(z)/'(z)Pst +AW2(t)/(z)U'(Z)]3

+BW(t)/2(z)U'(zW+ BW2(t)/2(z)/,(z)f"(z)} dz (7)

It is now assumed that full contact exists between the nose and the surrounding medium.
The total resistive force acting on the projectile at time t is therefore:

Pz(t) = 2'lTfz~L M(j, f', I") dt.
z~o

where:

(8)

M(f, /" I") =PsJ(z)!'(z) +A W~t)/(z)U'(Z)]3+BW(tW(z)U'(Z)]2

+BW2(t)P(z)f'(z)/"(z) (8a)

The optimal nose shape fez) is henceforward defined as that shape to which the minimum value
of resistive force is developed. Minimization of the functional Pz(t) requires satisfying Euler's
equation[12]:

dM(f.r.n .!dM(j,f',n + d2 dM(j.f'.n =0
dl dz d/' d? d!" .

Operating expression (9) on eqn (Sa) and using (lb. c) yields:

(9)

PoW2(t){U'(zW +3/(z)!'(z)!"(z)} +2BW(t){f(z)U'(zW +I(z)f"(z)} = O. (10)

It will be benefited if eqn (10) is written in terms of the nondimensional parameters:

z
~=­L

D­
l(z)=2 /W

/'(z) = D/2 Pm
L

Hence:

where:

Ii = Po~(t) (nondimensional).
2BLW(t)

(Ita)

(l1b)

(ltc)

(l1d)

(12)

(13)



28 DAVID Z. YANKELEVSKY

Equation (12) is a nonlinear second-order non-dimensional differential equation. The optimal
non-dimensional nose shape function f(~) would satisfy eqn (12) and the boundary conditions:

1(0) = 0;

1(1) = I.

(14a)

(14b)

A general solution is obtained as function of the nondimensional parameter Ii, i.e. for any
depth to which certain velocity, acceleration and compressibility correspond, there is another
optimal nose shape function.

SOLUTION PROCEDURE
Equation (10) can easily be solved for the two bounds of the problem:

Case I lower bound Ii = 0
In this case the equation becomes:

(15)

where fo(~) denotes the solution for the special case Ii = O. Solution is straightforward and
yields (Fig. 2 curve F):

(16)
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Fig. 2. Optimal nose shapes (non-dimensional).
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Case II. Upper bound ci = 00

In this case eqn (13) reduces to:

of which the solution is:
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(17)

(18)

For all values of ci: 0< ci < 00 a numerical scheme to solve eqn (13) has been adopted.
Divide the nose length L into N equal differences, the size of each is ~ =LIN. Using central

difference definitions transfers eqn (13) into the following nonlinear algebraic equation:

(19)

There are (N - 2) equations, one for each internal point inside the boundaries, which, together
with the boundary conditions (eqn 14a) determine the N unknowns. Solution starts at point
i = 2 where h-IW is the boundary condition and hW is assumed. When the coefficients are
known h+l(e) may be calculated. The coefficients for the next equation are then known, and the
values of h+IW (i = 3, ... ,N) are calculated. If the calculated value IN W deviates from the
boundary conditions (14a), a corrected value for Ii-e) is assumed and a new set of hW is
calculated.

f-(l:.) _lie)
2 ~ assumed - fN(er

In all the studied cases convergence was achieved within 2+ 3 iteration.

(20)

NUMERICAL RESULTS AND CONCLUSIONS
Figure 2 shows some typical results and a few common nose shapes for reference. Curve A

represents the family of noses having a conical shape, curves B and C represent the ogive noses
CRH =9.25 and CRH =2.2 respectively. (An ogive nose has a circular shape which is defined by
the parameter CRH, that is the ratio between the arc's radius and the projectile diameter.)

Analytical solution of eqn (13) shows the lower bound (curve F, eqn 16), and the upper
bound (curve E, eqn 18). Curves 1-3 show numerical results for ti =1; 0.1; 0.01 correspond­
ingly. For smaller values of ci, curves approach the lower bound (curve F), and for ti > 1curves
approach the upper bound (curve E). Though the solution is dependent on the parameter ti it
may be seen that it is sensitive to the low range of ti, namely 0.Ql < ti < 1, and practically for
ti > 1 there exists a single optimal shape function independent of the instantaneous values of
velocity and acceleration and of the volumetric strain.

The lower bound shape is much closer to the ogive nose shape rather than to the conical
nose. It is in agreement with the experimental observation in the low velocity range that an
ogive nose penetrates deeper than a conical nose of equal length and diameter[l).

In the special case where the penetrator is driven at a constant velocity, i.e. W=0,
minimization of the reduced functional (8a) yields equation (17). Its solution is eqn (18),
independent of the velocity. Taking that special case as an example, the total resistive force can
be calculated when the nose shape is known. Calculating for the optimal nose at constant
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penetration velocity yields:
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1/D
2{ (D)2 . 2 }optimalPZ(t) = -4- Pst + [0.14063 B +0.10547 Po] L W (t) .

Where for a conical nose the resistance force is:

1TD2
{50 (D)2 . 2 }conicalPZ(t) = 4 Pst +[0.2 B +0.250 Po] L W (t) .

(21)

(22)

It should be noted that the resistive force in the discussed case of smooth surface decreases
with slenderness and approaches the static term at an infinite slenderness. Fig. 3 shows the
dependence of the dynamic term in eqn (21) on the volumetric strain and the nose slenderness.
The resistive force on the optimal nose is very sensitive to the compressibility at the low range
and only slightly affected by the compressibility for soft materials.

To conclude that example the normal interaction pressure distribution is calculated with aid
of eqn (6), (18) and shown in Fig. 4. For the discussed case of penetration at constant velocity,
a constant pressure acts on the conical nose, while it is variable on the optimal nose
with higher pressure closer to the tip. Only along a limited length at the front which may vary
between 15 + 25% of the nose length, there exist higher pressures on the optimal nose. At the
tip, the tangent to the nose forms a right angle with the axis. The angle decreases repidly as is
shown in Fig. 2. It has been found [9, 10] that the discs model predicts the projectile motion with
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Fig. 3. Effect of compressibility on the dynamic resistive force.
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Fig. 4. Interaction pressure distribution.

very good correspondence with test data, however it is believed that the model represents
better slender noses. It is believed therefore that the calculated stresses around the nose tip are
less accurate relative to those at a certain distance from the nose tip.
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